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Accurate Evaluation of Wiener Integrals* 

By Alexandre Joel Chorin 

Abstract. A new quadrature formula for an important class of Wiener integrals is 
presented, in which the Wiener integrals are approximated by n-fold integrals with an error 
O(n-2). The resulting n-fold integrals can then be approximated by ordinary finite sums of 
remarkably simple structure. An example is given. 

Introduction. Wiener integrals in function space play a major role in a number 
of applications in physics and in probability theory, see e.g. [1], [6], [7], [9]. A number 
of remarkable results have been obtained concerning the approximation of these 
integrals by finite-dimensional integrals (see in particular Cameron [2], as well as 
[8], [10], and [14]). The resulting n-fold integrals are, in general, difficult to evaluate 
with any accuracy, and as a consequence the approximation formulas are not of 
significant practical use. The aim of this paper is to present a new approximation for 
Wiener integrals accurate enough and simple enough to be of practical interest. Some 
of the elegant generality of Cameron's work may be lost, but the method is applicable 
to many functionals which appear in physics, and will furthermore afford an intuitive 
grasp of the relation between ordinary quadrature and quadrature in a function space. 

The two main ideas in the approximation method are the following: the Wiener 
paths are carefully interpolated by a certain family of parabolas, in such a way that 
all the moments are exactly reproduced; and nonlinear functionals are expanded in 
a certain Taylor series, with the quadrature formula adjusted so that the first two 
groups of terms are well approximated. 

Outline of Goal and Method. Let C be the space of continuous real functions 
x(t) defined on 0 ? t < 1, with x(0) = 0, and endowed with the Wiener measure W. 
Let F[x] be a functional on C; our aim is to evaluate 

J = f F[x] d W; 

we shall construct approximation formulas of the form 

(1) f F[x] dW L Fn(ul, u2 , un) 

*exp(-u1 - 2 - * - un) du, du2 ... dun 

+ (n 2) 
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2 ALEXANDRE JOEL CHORIN 

where it is required that the n-fold integral be capable of approximation by an ordinary 
finite sum of simple structure without increasing the order of magnitude of the error. 

In general, the variables ul, * , un will be linear functionals of the paths x(t); 
our quadrature formula will thus be based on an approximation of a functional of 
the paths by a function of linear functionals. We shall have 

1 

(2) ui= ai(t) dx(t), i = 1, --- n, 

where the ai are ordinary functions on 0 < t < 1 satisfying 

f ai(t)a i(t) dt = i j,, bi i the Kronecker delta. 

The integrals (2) exist as generalized Stieltjes integrals for almost all x(t), see [12]. 
The resulting ui are independent, gaussianly distributed random variables with mean 
O and variance 1/2 ([12], [15]). They play a major role in the construction of Wiener- 
Hermite polynomials [3]. In intuitive terms, the ai(t) should be chosen in such a way 
that the finite-dimensional space spanned by linear combinations of their derivatives 
contain most of the information required for the evaluation of the integral. If no 
information about F is available, then there is no rational basis for making a choice 
and one may follow the example of Cameron [2] and fix the ai(t) in advance. Some- 
times, there exists a natural choice: for example, the solution of the one-dimensional 
heat equation 

vt vXX, v(x, 0) given, 

can be written as a Wiener integral. This Wiener integral is equal to a one-dimensional 
integral of a function of 

ul= 10 1dx(t) = x(l); 

this integral is merely the Green's function representation of the solution (see [4]). 
In the following sections, we shall construct quadrature formulas for functionals 

of the form 

F[x] = g(x(t&), x(t2), X , x(tm))G(f V(x(t)) dt) 

where G(y), V(y) are ordinary functions of their arguments, g(yl, * , Ym) is an 
ordinary function of m variables, and ti, t2, ... , tm are fixed values of t. A case of 
major importance in physics is G(y) = exp (-y). We shall begin by constructing 
quadrature formulas of arbitrary accuracy for some special functionals, and then 
proceed to the more general case. 

Integrals of Some Special Functionals. Consider first the functionals 

1 

(3) F[x] = f xm(t) dt, m integer. 

Their integrals can be readily evaluated; we have 
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f4 J {fo xm(t) dt} d W = f {f x (t) d W} dt 

mn/2 = J Cmt"t dt = Cm/(l + m/2), 

where 

Cm = 0, m odd, 

= 2-m/2(m- l)(m-3) ... (1), m even. 

The change in the order of integration can be justified by application of Fubini's 
theorem (see [2]). 

We now construct a quadrature rule which yields exactly the result (4) for all m. 
Set 

F1 (v) = f (-/t v) dt, 

i. e., evaluate the functional (3) on the special paths x(t) V\t v. One can readily 
verify that 

7-1/2 f{f (Vt v)" dt}e-V dv = Cm/(I + m/2), 

in exact agreement with (4) for all m; i. e., the moments of x(t) are reproduced exactly. 
Now note that if the integration in t is approximated by a quadrature rule which 

yields an exact answer for all polynomials of degree less than or equal to [m/2], where 
[m/2] denotes the integer part of m/2, and if the integration in v is approximated by a 
weighted Gaussian quadrature formula which yields an exact answer for all integrals 
of the form 

J m -V2 d m' < m, 

(such quadrature formulas are given e. g. in [13]), then the resulting ordinary finite 
sum will still yield the exact value of the integral of the functional (3). The important 
point is that the half-integer powers of t, for which the quadrature rule yields an 
inaccurate answer, are multiplied by odd powers of v, and thus, after integration with 
respect to v, do not affect the answer. Now consider functionals of the form 

F[x] = V(x(t)) dt, 

where V(y) is an ordinary function of the real argument y, having m derivatives V', 
I. .. ,V'- with, for all y, yo, 

V(y0 + y) = V(y0) + V'(Yo)y + + (v 1)! 

+ V (yo + y)Y o < = (y) < I 

where 
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f {f V(m(yo + G(x(t))x(t))xm(t) dt} d W = O(Am/2+l) as A -O 0 and for all yo. 

Divide the interval 0 ? t ? 1 into n intervals IA, I2 , *I of equal lengths n-1; 
define 

ai(t)= -\In, t C Ii, 

=0, tEI2i, 

and 

Ui= ai(t) dx(t). 

We note that the derivatives of the ai(t) are delta functions. Write 

Xi= x(i/n) (xo = 0), 

Vi= V(xi), Vi'= V'(xi), etc., 

Axi x(t) - x((i - l)/n), (i- 1)/n _ t < i/n; 

we have ui = (x, - x -1) -/n, and, conversely, xi = (1/V\n)(ul + * + ui). We can 
write 

F[x] d W {f V(x(t)) dt} d W 

L {=l (i-l)/nC V(x(t)) dt} d W = f { f V(xi-j + Axi(t)) dt} dW 
n 1/n 

f { f?X (ZVi + V>1 /Axi + + Vi1)* (AXi)m1)} d W + O(nm), 

1. e., 
r n 1/n 

f F[x] dW = -n/2 f {z n V(xi-, + Vt v) dt} 
c ~~~~~~i=oo 

(5) exp(-ul - - - Ui - v2) 

du, du2 ... dUn-, dv + 0(n m/2) 

1 
Xi-i = V (u1 + * + ui-1) 

\In 

(5) is of the form (1), and, as before, the integrals can be approximated by means of 
finite sums. 

Two remarks remain to be made, for use in the next section. The approximation 
(5) can be derived through the use of the interpolation formula for Wiener paths [11]: 
if x((i - 1)/n) = x_1, x(i/n) = x 1 + ui/V,\n, then for t such that (i - 1)/n < t < 
i/n we have 

(6) x(t) = xi_i + ui -Vn At + wi -Vn (At(- At)) At = t- (i-1)/n, 
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where w, is a gaussianly distributed random variable with mean 0 and variance 2. 

Thus, 
n 1/n 

F[xl dw= f{ f V(xij_ + Axi) dt dW 

(7) V 1r 1 { f v(xi_ + uij\Vn t + wi (t( - t)) dt)} 

*exp(- U - U2 -***-Un - Wl - W2 -***-Wn) 

du, ... dun dw, ... dwn + 0(nm/2) 

Some elementary algebra yields 

irF f {JO~"~ (u. -v/n t + wi V/n t- t))l) dt} exp(-u2 _ w2) dui dwi 

1 /n 
_ r-1/2 

f f (-Vt v)m dt} exp(-v2) dv 

for all m, and thus the (2n + 1)-fold integral (7) and the (n + 1)-fold integral (5) are 
always equal. This is of course true only because the functional under consideration is 
linear in the partial integrals f 1/n V(xi(t)) dt. Finally, if one is content with accuracy of 
order O(n-2), one may replace the t-integration by a one-term midpoint rule, i. e., use 

1/n I 1 11/n 
f t dt =f t dt = 0(n n 2n 

to obtain 

() fF[x] dW = -n/ f{ !V(xj_j + v/(2n)1/) 
(8) Jcj= I{1 n } 

_ exp(- - Un-1 
- v2) du, ... dun-, dv 

+ O(n 2). 

Functionals which are Functions of an Integral. In this section, we consider 
functionals of the form 

F[x] = G(f V(x(t)) dt) 

where V = V(y) is a function of y satisfying the conditions above, and G(y) is a 
sufficiently smooth function of the real argument y. The precise requirements on G 
will appear below. The main result of this section is a remarkably simple formula, of 
which (8) is a special case: 

f G(f V(x(t)) dt) d W = iK-'2 f {G( V(xj_j + v/(21)1/2))} 

- U2 2 
- v2) 

*dUl ... dun1 dv + 0(n 2). 
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As in the previous section, we divide the interval 0 ? t ? 1 into n subintervals of 
length n-F, and define xi, ui, Vi, Axi , i = 1, ... , n, as above. Note that the variables 
Axi, Ax,, i 5 j, are independent, by definition of the Wiener process, as are the 
variables ui, ui, i $ j, and Axi, u;, i # j. Of course, ui, Axi are correlated. 

We introduce the following notations 

I 1~~~~~r/n 

1i = [ Vi-17 Ai =(xij + Ax3) - Vi-1] dt, 
n J 

thus 
i/n 

J V(x(t)) dt = qi + Aqi 
(i-l) /n 

and 
1 \ ~~~n 1/n 

F[x] = G(f V(X(t)) dt) = G(f2 f V(xi31 + Axi) dt) 

= G (q3 + Aqi)) 

= G(z qi) + G'( qi) E Aqi 
(10)i=i= jl 

n n n 
+ I G"(I qi) j E Aqi Aq3 2 i=l j=1 k-1 

+ 1 G"'( qi) 1j 1: E Aq, Aqk Aq1 6 i k I 

+ 24 Giklml i E X Aq3 Aqk Aq1 Aqm, 
i k I in 

where G', G", G"', Giv are the derivatives of G with respect to y, which are assumed to 
exist, and 

klm= G qi + mAqi + kAqk + GAq1 + Aqm) ,0 ? -i, Ok, G O,m < 1I 

We first show that the contribution of the last three sums to the integral of F[x] is of 
order n-2. We have 

f Gim AqiAqkAqIAqm d W | I /2 Aq 2Aq2Aq2Aq d W 

where I = JC (G'vim)2 dW is assumed bounded for all j, k, 1, m. Furthermore, 

( r } ~~~~~~1/2 
Aq 2Aq2Aq2Aq2 d W 

(J )~1/8 (J )1/8 ()1/8 )/ 

by(f d Aq8 dW A8 dW)ef(fAi8 dw 

by definition, 
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1l/n 

Aq, = f [VLjAxj + 2 V"(xj_ + OAxj)Ax;] dt, 0 < 0 < 1, 

and, therefore, if expressions such as 
1/n 2# 1/2 

nV_1)2/ V"(x11 + OAx1) dt d WI 

a, ,B integers, a +j = 8, are bounded, we have 

f Aq8 dW = O(n-12), (fAqJ dW) = 

and a typical term in the last sum in (10) is O(n 6). There are n4 terms in the last sum 
in (10), and thus, the total contribution is O(n-2). 

Before considering the other terms, we introduce the notations 

vi= V= V(x ), i > j, 

= \(s ,in j, 

and 

i= V= V(x) j< i, j < k, 

( ui )i< j <k, 

v(x- ),< j < i, 

- V(x;- i' - ) , i<j,k j, etc., 

i. e., we write in superscript the indices of those among the variables ul, * , un which 
we set equal to zero in the argument of V. Thus, 

(11) G'(EG qi) G= 
I 

V ik1) + Giv( V(aK)) O u 

+ two similar terms in Uk, Ul, 

where 

a= xi-1, i < i, 

= (1/V\n)(ul + U2 + + Uji-l + GU, + Uj+1 + + Ui-1), 

i > j, 0 < 0 ? 1 

Furthermore, 

(12) Aq; = f VW_Axi dt + V f V"1. (Axi)2 dt + 

Now, if any one of the indices j, k, I is larger than the others, for example I > j, I > k, 
then 
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(rl/n i/n 1/n 

L - il~jAxj dt 
L Vk,lAxk dt VI-,Ax, dt dW = O, I 

d = 0 

since the expression in curly brackets is an odd function of the random variable Ax,. 
For the same reason, 

A tG"'( - V(ikl')) f VtiAxj dtf Vk,lAxk dtf VI-,Ax, dt} dW = O. 

An inspection of (11) and (12) shows that for I > j and 1 > k, or j > I and j > k, or 
k > landk > j, 

f {G"'(E qi )AqiAqkAql} dW = 0(n ), 

there are 0(n3) such terms, and their total contribution is thus 0(n-2). There remain 
terms for which j = k > 1, or j = 1 > k, or 1 = k > j; they are of order n"92 but 
there are only 0(n2) such terms. A similar analysis shows that 

f {G( qi) ji AqiAqk} dW = 0(n ) 

and thus 

(12) f F[x] dW = f {G( qi) + G'( qi) i Aqi} dW + O(n2). 

This is our main formula; it shows that accuracy of order n-2 can be obtained 
provided the finite-dimensional integral reproduces the integral of the first terms in 
the Taylor expansion with sufficient accuracy. The crucial fact is that those first terms 
are linear in the Aqi. To evaluate the integral on the right-hand side of (12), we make 
use of the interpolation formula (6). We integrate the functional F over all paths such 
that 

(I/V\n)(ui + U2 + *. + ui) < x(i/n) 
< (1/ N/n)(ul + U2 + + ui) + (1/Vn)(dul + + dui) 

and then integrate over all values of ul, u2, ***, un. This yields 

f {G(t Eqi) + G'( qi) qi Aq} dW 

= -rn {G( ! V(xj_)) + G'(, n V(xi_l) 

(13) E f (v(x -1 + uj \/n t + wi \/n t - - V(x i)) dt} 

exp(- - Un- - - wn) du, ... dUn dw ... dwn 

which can be seen to differ only by 0(n -2) from 

(14) 7n f {G( f Xi-i + ui -\n t + w, / - t)) ))dt} 

exp(- - Un- W- - wn) du, . dUndwi .. dWn. 
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The (2n + 1)-fold integral (14), an analogue of (7), approximates the integral of our 
functional with an error of order n-2. We now proceed to simplify formula (14). 

Define 

AXi = ui-\n t + wiV\n (t(l/n -t))12, 

then 

r/n 1 1/n 1/2 

(15) A /AXi dt = ui,/n 2- + wi-Vn t t dt 

(16) f (A X)2 dt = Ui 12 2 + 2u,-wn ))t/2 dt, 3n 6n 2nw, 

1/n 
(17) (AX,)3 dt = U3 O(n5/2) + w3. 0(n5/2) + u2wi -0(n 5/2) + uiw2 O(n 52). 

Consider a typical term in the sum on the right-hand side of Eq. (13), for example 

G',-V(xi -l)) 
(18) n 

f (ZV(xi1 + ui v\n t + wi In t- - V(x i dt) 

The variables Axi, u; are correlated, and this correlation manifests itself through the 
presence of the variable ui in both terms of the product. Let us put the role of ui in 
evidence. Write 

(19) v = ui. 

Since for j > i, 

(1/V/n)(ul + U2 + + ui-i + v + ui+i + + ui-1) = xi-, + (v - ui)/Vn, 

the change of variable (19) changes G' into 

GI( n Vi-( + v xi-1 + 

= GI( n Vi-) + G" ( I Vi-,) v,(xD -V + * 

where the three dots denote the obvious remainder term. Furthermore, 

Ft( n VI-)(i)n 

I V'(x~~I 0) 1)x 

= Gt(E-n 
Vi(i)(X-) 

n2 = G"(~~- vE i)v'(x_1)&'-'_ 
+ 2 {G" (a vii)! ) V'E vx ) V'(xii()} -/e + 

2ee n s ( =16) and (17), wehai=i+l 

On the other hand, using (1 5), (16) and (1 7), we have 
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Jun ( v(xi + v Vn t + w \/n (tQ--f V(xi-1) dt 

= V~ii~vVn-3f~+ ~ 1)) 1/2) 
=~ V -\IU n 22+ wi -\n A t(- t) dt) 

+ - v//l'(U 2 + w2 6 + 2u,w,n f t(--t)) dt) 

Carrying out the multiplications, dropping all terms O(n-3) or o(n3), as well as all 
terms which are odd in any one of the variables v, wi, ui because such terms vanish 
after the integrations in v, wi, ui, and using the identity 

7r (/2 f (av2 + bw2) exp(-vV2- W2) dv dw, = (a + b)v2 exp(-v2) dv, 

a, b, arbitrary constants, we are left with (see the appendix) 

I 
1(/In 1) 

|f1'~ ( V(x + ui \'n t + wi\'n t - t - V ) dt} 

*exp( - ul- - un- w) du, du2 ... dun dw; 

- -n/2 {- G'( Ij! V(Xi-l)) 2 v2 V"I(xi11) 

2 ( =( n 2 
Vi-) i=i v +1 

j 
v/_l} 

exp(-u - *** - _ v2) du, .. dun-l dv + O(n 3); 

grouping all such terms, we see that the right-hand side of (13) differs only by terms 
O(n-2) from 

f {G(Z V(xj_j + v/(2n)l/2))} exp(-u1 - _Un_- -v2) du, ... dUn-1 dv 

and the formula (9) has been established. 
The remarkable feature of formula (9) is that it is no more complicated in structure 

nor does it require more computing effort than the standard "rectangle rule" ([2], 
[6], [9]), whose accuracy is only O(n- 1) 

Generalizations. One may wish to construct formulas of higher accuracy than 
(9), e.g., by using the identity 

(20) f (f xm(t) dt d W = 27r(1 f du f du' dt ds 

.(U\/t)m(UV\1t + u'(s - t)l/2)tm exp(- u2 _ u2) 

which generalizes (4). The resulting quadrature formulas are difficult to use, and a 
more sensible approach to increasing accuracy is the use of a function-space analogue 
of Richardson extrapolation: if Jn is the n-fold integral approximating a Wiener 
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integral J, and if we know that 

Jn = J + constant * n-2 + o(n-2) 

then we may evaluate Jn for several values of n and extrapolate in the standard 
manner. An example will be given below. 

The formulas above can be generalized to a slightly wider class of functionals. 
For example, if 

F[x] = g(x(l))G(f V(X(t)) dt) 

with 

f g"(eY2 dy < + , 

then one can verify that 

f F[x] dW 
=-n/2 f (Xn + G(E V(x 1) + 

2 2 2 
exp(-u1 - - Un_ v ) du, ... 

dun- dv. 

It would be interesting to generalize formula (9) to cases where V is not smooth. I 
conjecture that (9) remains valid if V is only piecewise smooth, with a finite number of 
discontinuities; a proof has not yet been given. 

Finally, problems may occur in which the order of the integration in [9] is too high 
for use of Gaussian quadrature. Appeal has to be made to Monte-Carlo quadrature, 
and it is useful to note that the variance reduction technique described in [4] is parti- 
cularly well suited for use on integrals of the form (9). This variance reduction tech- 
nique requires the expansion of the integrand in Hermite polynomials of the ui, 
i = 1, .. , n - 1; such Hermite polynomials are identical to the Wiener-Hermite 
polynomials introduced in [3]. 

An Example. Consider the integral 

J= {(f X2(t) dt)} d W 

used as an example by Cameron [2]. We have G(y) = y2, V(y) = y2I and 

j _ -n/2 f { I (f + v )2}2 

2 2 2 
*exp(-u1 - -Un_ - v ) du, ... dun-, dv. 

The expression in curly brackets squared is a polynomial of degree 4 in ui, i = 1, 
n - 1, and v; the integral can therefore be evaluated exactly by a finite sum containing 
3n terms, obtained by application of weighted Gaussian quadrature. For example, 

-1/2 (2 )v 

J9 = r1 
f {! ( ,)2 + . 

( + 
exp(-ul - v2) du, dv. 
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It can be shown, (e.g., by application of formula (20)) that J = 7/48 (see also [2]). 
Some tedious but elementary algebra shows that Jn = J + (l/24)n-2, so that 

9 15/2 _65/9 
=48' J2= 48 J3 1- 48 48 

~~~~~48 
etc. Extrapolation from any two of these values, e.g., 1(4J2 - J1), yields the exact 
value J = 7/48. 

Less elementary examples will be displayed in [5]. 

Appendix. In this appendix, we reproduce some of the intermediate algebraic 
steps omitted in the main text, in particular those following the change of variable 
defined by Eq. (19). 

Introduce the notation 

G(-) = G(! Vi-l) 

We start at Eq. (19), in which the change of variables 

(19) v= u= 

is made. Vi, for i < j, does not depend on ui; thus G' becomes 

G'(! Vi_) = G' Vi-l + E v(xi1 +" u3)) 

= G'(-) + G"(-)( ! VI(xi_,) 7 i) + terms of order n-2 

Furthermore, expanding G"(.) in powers of u;, we obtain 

G"(.) = G"(f Vi() + G"'(Z! nv)! nI 

+ terms of order n-3. 

Thus G' becomes, after the change (19), 

G'(-) + G"6 Z _- Vi-j E V'(X -n ) 

+ G"'( vI- V") l: ( ''ui) V'(x -)v-i j=, n n i=j+1 Vn i1 n 

+ terms of order n-3. 

We now multiply this expression by 

f' { v(xi1 + v VIn t + wi n V t( )- V(xid)}t 

- V'-(vVn 2 + ws fI/n t t)) dt) 

+-2 V"1 ? 2 + ni6 + 2u3win f "t(t--t)) dt) + O(n512). 
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It is important to note that the functions Vi_, V._l, V1j_,, VJ'71 do not depend on v or 
w;, and thus, we shall obtain polynomials in v and w;. Terms which include odd 
powers of either v or w; can be omitted because, after integration with respect to 
either v or w;, they will vanish. 

The coefficient of v2 is 

In 2n2 G nv V'(xi1) V 1* V ) 
A 2: - -~1 i i 

+ V, n 2=lG" '(U Vn n i n 

+ 
I 

Vgi1 G'(-) + 0(n 3). 

The term on the second line is a product of u; and of a function independent of u;, 
and will thus vanish after integration with respect to ui. 

The coefficient of w2 is (1/12n2)V" G'(.). There are no terms in u2 which do not 
include as a factor either v or wi. Thus, we find 

f {G'(.) J V ( x(i-, + u i V n t + wi V-n t - t - V(x )) dt} 

*exp(-u - * U - - w) du, dun dw; 

= f {G'(ui = v) f V V(uil + v V-n t + wi v"n (t(-- t - V(xs_)) dt} 

*- * i - - - u+- * - Un - wi) 

*du, ... dui-1 dv duj+j * * dun dwj 

{G'() exp(-ul - - Uj2_ -uj+i - 2.2- -u2) 

-du, ... dui-1 dui+l ... dun} 

*{f (t 2 
V;1wV 

2 + V!-V exp(-V2 - w2) dv dw;} 

2 n 

+ ~~v2 2 2 G"(.) V-1 VE>1 exp(-u1 *- U v2) du1 dun-, dv 
2n =i+l 

+ (n -3) 

But we have 

f ( 12 w2 + - V2) exp(-v2 - w;) dv dw; 

I 
v2 exp(-V2) dv -exp(-un) dun 

-f2n2 2 2 

Therefore, the integral above reduces to 
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.i=+1 ) i G(i 22 2n +G"t 2n 7-1 

= 

tl 

exp(-u - - un_ -v2) du, .. dun dv. 

Summing over all j and adding the integral 

J G(.) exp(-U1 - 
U 

n_* - V2) du, ... dun- dv 

we obtain from (13) 

J {G( ) + G'( ) j Aqj} dW 

(<rCZ( n n 2 Z = Jr '- 2n 2 , ZG"(.) 2 3 l vG 2 } 
* exp(-ul - ***- uni - v2) du1 dun_1 dv 

- I {G(.- ) + , 1 2 G"( ) VL- Vt-} 

* exp(-u - - - v2) du i* i du dv 
+~~~~~ ~ ~ 2 {-2 "E 3V- /l 

*exp(-ul - U1- - v2) du, ... dUn- dv. 

The second integral is of order n-2, the first integral is merely the expansion to order 
n-2 of formula (9). 

-2 (9)~~~~~~~~2 

The proof of formula (9) for cases where g < 1 is a mere repetition of the previous 
calculation, with the change of variable (19) performed in the argument of g as well as 
in the argument of G. 
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